Time for a Checkup—Assess and Feed Back Your Opinion

While editing and selecting the articles for this and upcoming issues of Teaching for Success, I was struck by the number of ideas that dealt with the topics of feedback and assessment (which is a form of feedback in itself).

Readers of the February 2003 issue hopefully noted the novel QuickTip, “Let Your Past Students Advise Your Present Ones,” by Partner Author, Steve McNamara. Steve explains how student-to-student feedback is a simple, yet powerful success strategy.

In this issue, Steve provides another excellent evaluation-focused idea with his article, “Not One, But Two Answer Sheets?”, page 7, and so does Joseph Sainz in his article, “Road Test’ Your Students to Ensure Competency,” page 8.

It seems that feedback and testing are on the minds of many outstanding authors and instructors. I can only infer that these topics may be on your mind also.

But the only way to know for sure is to ask. So what IS on your mind? As a new TFS editor, I welcome and encourage feedback of all sorts concerning Teaching for Success. Please let me know what you find useful in this or other issues of TFS. Also, tell us what TFS should be doing better for you.

Are there teaching and learning topics you’d like investigated? Please, take a moment and give us your feedback. Just as you want to know what’s on the minds of your students, the Teaching for Success staff needs to know what’s on the minds of its readers.

The feedback you provide is one of the most useful tools of assessment that we have in grading our effectiveness. Are we indeed succeeding in our goal of providing you with practical information, ideas, and tips you can use in your classroom? Are we living up to our promises?

You can help us this month by filling out the TFS web-based, Electronic Feedback form. To access this form, click on this link: http://teachingforsuccess.com/IssueSupport2/ReaderFeedback2_03.html. Or enter this URL into your internet browser. This electronic TFS issue assessment form should make it easy and convenient for you to make your opinions known. Thank you for your assessments, opinions and suggestions!

Are there article topics you’d like investigated? Please take a moment and give us your feedback. Our electronic assessment form should make this easy.
First, this game-show format encourages the students to cover. I also tell them they can pick questions to stump their opponents, or may possibly pick questions they don’t know the answers to and can find out the answer from their opponents during the game. Each team member is responsible for coming up with his/her own questions, and they should have a few extras in case one of their questions is asked by someone else earlier in the game. I remain available to interject clarifications on some questions or answers.

The game is played in a series of rounds and during the game each student, in turn, asks an opposing student a question. No student is allowed to ask a question to someone who has already answered a question in that round, and the same student must ask a different person a question in succeeding rounds. Points are awarded for each question asked, either to the team answering it, or the one asking it, if it is not answered. Finally, this game-show format encourages the students to govern themselves in this activity and encourages teamwork, brainstorming subject matter and total class participation.

If you are like me, it seems some class sessions are over before they get started! To help me stay on task and to help guide students towards wise time management, at the beginning of each class I put the agenda of the class session on the chalkboard.

The agenda matches what is in the syllabus for that day, which keeps the students on task as to what we need to accomplish before class ends.

Stay on Track with an Agenda

Anne McIntosh, Ph.D.
Speech Communication
Division of Visual and Performing Arts
Central Piedmont Community College
Charlotte, NC

I f you are like me, it seems some class sessions are over before they get started! To help me stay on task and to help guide students towards wise time management, at the beginning of each class I put the agenda of the class session on the chalkboard.

The agenda matches what is in the syllabus for that day, which keeps the students on task as to what we need to accomplish before class ends.

If students ever want to know what we are going to cover, they can refer to their syllabus and stay prepared. For many first-time college students, this to-do list is effective and serves as a visual reminder of what tasks, topics and assignments are at hand.

Research in organizational communication and leadership training has shown that organized meetings proceed faster and more smoothly if everyone is able to see where the facilitator is taking them. Writing the agenda for the class session on the board is a great way of achieving this goal.

Self-study TFS QuickCourses® available now! At last, a low-cost, convenient way to learn new teaching skills for part- and full-time faculty.

Series-one titles are:
- Ensure Quality Testing.
- Create Positive Discipline.
- Construct an A+ Syllabus.
- Plan a Successful Lesson.
- Give Better Presentations.
- Improve Group Learning.

Details? Call 800-757-1183, or Send E-mail to: jack@teachingforsuccess.com.
In *The Republic*, Plato (427-347 B.C. Greece) details his theory of the perfect society. Some find Plato’s distaste for democracy alarming, while others gather great insight from the book’s political message. Leaving the political aspect of *The Republic* behind, you can still apply Plato’s thoughts on education to the instruction of your students.

One undeniable outcome of education is influence, meaning that once a person learns something, that person’s thoughts are now influenced by what they have learned. And, if a person has completed a two- or four-year college degree program, they have been exposed to a vast variety and amount of material and influence.

How do the things students learn about geometry, music, psychology, etc. influence them? In the most simple and profound of ways.

What the student retains from geometry helps him design his kitchen, what he learns from music theory helps him understand how a song is composed, and what he remembers about his course in psychology helps him understand human behavior. And all the other myriad principles, concepts and facts this student retains from his college experience allows him to make better personal and career decisions.

But we must go deeper to draw out the great truth Plato describes in *The Republic* concerning education—how to make society better by helping people as Plato wrote, “…contemplate reality, and the brightest of realities, which we say is the Good.”

We cannot know the attitude of a given student until you get to know him through interacting with him in and out of class. His attitude concerning a great many things, education included, has been molded by other people during earlier life stages. Yet, as an instructor-leader you have the opportunity to shape attitudes, too. How you treat each student you teach in your career can have a great impact on a large number of people—maybe even society as a whole.

I’m not suggesting that because you treat a certain student well in class—show him respect and affirm his ability to accomplish—(reality), that he will one day know the Platonic Good and magically become, for example, president of the United States and lead a nation. But, if you teach this student ideals such as potential, ramifications of and responsibility for one’s actions and decisions, critical thinking (thus enabling him to make better decisions in the long run), the power of positivism versus negativity, and so on, you may well help this student know “the brightest of realities.” You will help this student see his true role in life more clearly and may guide this student to find a superior path that he might have missed without your teaching.

And, when you lead your students down the right path—the path that helps them become better, more responsible, fulfilled and happy people, we will have made the world a better and more fulfilling place than it would have been otherwise. We and they will then realize the “Good.”

Source: Plato, *The Republic*, translated by H. D. P. Lee, Penguin Books 1972. Pages 113-155 of this translation deal primarily with education. In this and other translations, the latter section of Book II and most of Book III of *The Republic* contain the bulk of Plato’s thoughts concerning the nature of education.

Easy Grading of Essay Questions

Glenn Palmer
Tidewater Community College
Norfolk, VA
Palmers8@HISnet.org

The key to grading essay questions is to put the point values right in the essay question. This tells the students exactly what you are looking for, enables quick grading, and ensures fairness and objectivity.

Below is an example of an essay question from a history exam: (4 points + 1 point extra credit) Describe the Assyrian army (1 pt.), name at least one Assyrian king (1 pt.) (1 EC point for a name of a second Assyrian king), and two reasons why the Assyrians were so successful (2 pts.).

You may also want to state at the top of your test sheet your grading policies for spelling and grammar if they have a potential impact on a student’s grade.

Making up a test that includes this grading information takes a little more thought and time, but grading the test is a snap and students benefit, too.
Faculty must regularly communicate the importance of safety and convince the students about the value of a safe work environment.

Higher education—higher risk

The proportion of laboratory accidents and incidents is at least 100 times greater in academic settings than in industrial facilities. Surprisingly the difference is not so much due to a lack of knowledge or training. It is primarily due to a paucity of safety attitude in colleges. Scientists in industry are surrounded in a safety-conscious environment. Academic scientists are more relaxed in the laboratory usually overlooking subtle behaviors that pose potential health and environmental hazards. Examples abound of incidents in academic labs in which faculty and students were contaminated, injured or shortened their lives because of imprudent attitudes. A more diligent safety philosophy can be instilled with instructional staff through proper training and reinforcement. It also helps to have forms, such as the Safety Assurance Check Sheet shown on page 5, that simplify the implementation of safety protocols.

What is a Safety Attitude?

The Secretary’s Commission on Achieving Necessary Skills (SCANS) report mentions that students must be inculcated with a work ethic that ensures the safety on the job for all science careers. Adult learning theorists recommend that these skills are effectively imbued by having the students learn through seeing and practicing the modeled behavior. In addition, assessment is effectual only if the students are evaluated on how they carry out the behavior along with tests of knowledge about the practices. This may seem like a tricky proposition for college science faculty with little industrial safety experience.

According to the Laboratory Safety Institute, having a safety attitude means that faculty and students are aware of the following points:

- Knowing the hazards.
- Knowing the worst things that can happen.
- Knowing what to do and how to do it if accidents should happen.
- Knowing how to use prudent practices, protective facilities and protective equipment needed to minimize the risks.

continued on page 5

Is Your Laboratory Safe? Where to Find the Answers

Brian R. Shmaefsky, Ph.D., **TFS** Partner Editor

Biology & Environmental Sciences

Kingwood College

Kingwood, TX

brian.shmaefsky@nhmccd.edu

An e-mail joke from a college science colleague provided the impetus for this *Teaching For Success* article. Titled “Chemists Last Words,” it listed twenty-five facile statements after laboratory safety infractions. Some particularly whimsical ones were:

- “And now for the taste test.”
- “And now a little bit of this....”
- “And now, just shake it a bit....”
- “Why is there no label on this bottle?”
- “Oh no, wrong beaker....”
- “Where did I put my gloves?”
- “This is a completely safe experimental setup.”
- “Trust me, I know what I am doing.”
- “And now, the detonating gas problem.”
- “First the acid and then the water....”

On the surface these jokes may get a good laugh from college science faculty. However, deep in the minds of college faculty it stirs concerns of the hazards accompanying laboratory teaching. Laboratory safety in the academic environment is for many faculty project-by-project concern addressed secondary to teaching the laboratory protocols.

Good science equals good habits

Good science teaching is not only presenting facts, examples and applications using suitable instructional strategies. It also means modeling the behaviors expected for careers in the discipline. The sciences require sets of behavioral skills not typically found in most of the other teaching fields. For example, science students must be able to accurately and consistently calibrate, operate and troubleshoot technical equipment. They also need explicit manual dexterity skills for handling chemicals or specimens. Most important of these skills are those required to perform all tasks safely in the laboratory environment.

Industrial scientists know all too well the value of following safety guidelines when performing scientific procedures. These practices are obviously prudent for protecting the health of themselves and others. Safe laboratory operations are also important for protecting the Earth by minimizing the release of hazardous materials into the environment. However, industrial scientists know that of utmost concern is the legality of safety. Safety practices in the lab or in the field are mandated by federal and state guidelines. It is assumed by the government that scientists are versed in the appropriate safety methods.
Industrial scientists would add that faculty and students need to maintain a positive safety attitude. Safety must be viewed as a valuable skill rather than as a necessary evil. Behavior-based safety is one key to the success of industrial safety programs. Scientists in industry learn to make safety part of their everyday routine. Plus, they are regularly evaluated for safety performance through incentives and guided corrections. Most important is that everyone is part of the safety picture and each person encourages the other to model safe work practices.

Faculty have the power to impart a safety attitude in students by diligently exercising the same safety precautions that they teach. They must also regularly communicate the importance of safety and convince the students about the value of a safe work environment. A positive disposition about laboratory safety is fundamental to convey through a steadfast commitment to safety practices.

A Safety Strategy Checklist:

It truly helps to have a simple checklist to ensure consistent safety teaching. Checklists are part of the documentation requirements for industrial laboratory safety standard operating procedures. The checklist should be made available for all laboratory teaching faculty including adjunct faculty and teaching assistants. A quick safety training session is also recommended for ensuring that all instructors know the philosophy of the college’s safety education practices.

- Are students aware of laboratory safety principles?
- Do you have the safety protocols for the laboratory activity?
- Are all the safety precautions in place for the laboratory activity?
- Is there an accessible emergency plan posted?
- Have the students been given a brief safety overview before starting the activity?
- Is proper safety modeling being demonstrated in the laboratory session?
- Are students being assessed on safety skills?

* This can be ensured with a lesson on laboratory safety and the use of a student contract. A sample student safety contract can be viewed on the Flinn Scientific Inc. website at http://www.flinnsci.com. The comprehensive contract is also a great document for educating students about science lab safety.

Safety Assure Check Sheet:

Before Laboratory Session:
- Date.
- Person leading the laboratory session.
- Building.
- Room number.
- Process description (describe what is being done).
- Protocol steps or copy of activity.

List of hazardous materials
- Potential hazardous materials or other risks.
- Personal protective equipment for students.
- Location of instruction manuals or MSDS.
- Safety precautions being taken.
- Emergency or accident procedures in place.

After the Laboratory Session:
- Methods of waste disposal.
- Locations of spent equipment.
- Modifications not listed in protocol.
- List of unexpected incidents.
- Comments for next laboratory.

Download Dr. Shmaefsky’s Web Reference, Works Cited and Laboratory Safety Check Sheet from http://teachingforsuccess.com/IssueSupport2/IssueSuptIndex.html. The password to open the Check Sheet is “checksheet.”
Do you provide any sort of an orientation for your distance education students? If so, what do you do?

A My students complete an online orientation. Site pages are toured to ensure that students know where to locate course information, can successfully navigate the site, and answer questions/make comments/request information when the tour is complete.

—Dave Warner, Department of Communication and Assistant to Director of Distance Learning, Volunteer State Community College, Gallatin, TN

A There is printed documentation sent to students, but the orientation has been eliminated. I provide online information on my faculty web page to students so they can get information about a course before they login to the secured class web site.

—Lauran Sattler Assistant Professor, Computer Information Systems, Ivy Tech State College-Warsaw, IN

A I send out letters at least one week before classes begin to welcome students to my classes. The Distance Learning department sends out information to the students as well about how to log on, access files, etc. There is no on-campus orientation.

—Wanda K. Wyffels, Partner Author, Sociology Adjunct, Northampton Community College, Bethlehem, PA

A Yes, in class we review the course syllabus, go over Blackboard technology, and I stress the importance of keeping on top of the reading. I spend quite a bit of time on the most complicated aspects of the course, such as group discussions (based on postings on the website) and deadlines associated with the course.

—Dr. Craig Mulling, Assoc. Professor, Political Science, Prairie State College, Chicago Heights, IL

A Yes, I have one meeting when I hand out the syllabus and make sure that everyone can get onto the internet and to the web site. I ask if everyone knows how to download files and use E-mail, since it seems that about a third of the students don’t come to the orientation and don’t know what is going on and others either don’t know enough to ask questions or are too shy and find that they have problems using their computers. I’m not sure that this orientation session is really of much value.

—Kathryn Hedges, Adjunct faculty, Natural Sciences, Prairie State College, Chicago Heights, IL

A Yes, students have on-line orientation and we also offer an on-campus one for those who can attend.

—Maria Cicman B.Ed., M.Ed., Facilitator/Instructor, Teacher Assistant Program, Distance Delivery, Red Deer College, Red Deer, Alberta, Canada

Win $300 to $25 in the TFS 2003 SuperIdeas Contest!

Win in a cash award; enjoy the recognition of being published; grow your career, and contribute to the improvement of teaching in higher education. Your teaching idea could win you one of the following awards. Coauthored ideas are accepted and coauthors will split any prize awarded.

There are two contest idea categories: SuperIdeas and QuickTips. In the SuperIdea category, First place wins $300, Second place $200 and Third place $100. In the QuickTip category, First place nets $100, Second place $50 and Third place $25. Go to http://teachingforsuccess.com/Contests for contest rules.

But, to win you must enter. Send your entries to us by E-mail (preferred), fax or mail by May 31, 2003.

See the bottom of page 2 for TFS postal and e-mail addresses and fax number. Submissions must fit into one of two idea categories: full-length SuperIdea articles (approx. 450-900 words) and QuickTips (approx. 50-449 words).

In addition, all articles submitted will be eligible for publication in upcoming TFS issues. The winners will be notified after July 1, 2003, and featured in the August, Sept. and Oct. 2003 issues. The copyright to all published articles must be assigned to Pentronics Publishing.
Previous Lecture Quiz Earns Students Bonus Points

Angela Payne
Computer Instructor
Mississippi County Community College
Blytheville, AR
apayne@mccc.cc.ar.us

In some of my classes I give bonus quizzes. The student has the opportunity to earn five bonus points for studying the previous class session’s lecture notes.

I announce the quiz will be given the next class meeting. Students receive a bonus point for each question answered correctly. Any question not answered correctly will not count against them. For students, the advantages of bonus quizzes are earning extra points toward their final grade and they are encouraged to study long before the big exam day rather than cram the night before.

The advantage for the instructor is that the questions missed by most students pinpoint the topics that need to be reinforced before the exam day.

Grading the quizzes is easy; bonus points are added and questions missed are ignored. Bonus Point quizzes are a win-win teaching and learning tool for both students and instructors.

Electronic Draft Journals Aid Student and Instructor

Stuart Tichenor, TFS Partner Author
General Studies & Business Technologies
Oklahoma State University-Okmulgee
Okmulgee, OK
coyotetich@yahoo.com

Students in my Composition class are assigned a number of essays during the semester. Writing these essays consists of several planning and drafting stages. Along with these stages, students must keep a journal, but as an alternative to the traditional pen and paper journal, I have students write their entries using a word processor. On the same day a completed essay is turned in, I ask students to hand in their electronic journals.

When I take their diskettes back to my office, it’s much easier to scan students’ typed ideas rather than handwritten ones, compose a brief comment, enter the score, and click the “save” button. And if students know they are going to miss a class, they are encouraged to complete their journal assignment and send it to me as an E-mail attachment; that way their assignments can be submitted in a timely manner.
After teaching business computer applications for many years, I developed dissatisfaction with testing students’ proficiency using word processing and spreadsheet applications. Were students using mechanical or haphazard ways of preparing for these tests, just winging it on the day of the test or were they truly competent? I needed a strategy to know for sure.

My “Road Test” approach
I decided to model my computer tests loosely after the road test part of a typical driving examination; you know the routine: one driver, one examiner together in a car, the driver receiving immediate feedback.

A handout gives the students specific concepts to practice a week in advance of the test. One part of this handout includes basic concepts and the other part includes intermediate to advanced ones. I then split the class in half; one half comes to take the test on one day and the other half comes the next class period. [Of course an alternate learning activity will be needed for the half of the class that is not testing.]

I use two computers in the back of the room to ensure privacy; one computer is for the student to perform the assigned tasks, and one is for me to grade the student using a spreadsheet as he or she does the test. This way, we both know the results of the test immediately.

Task selected at random
I grade each student on every concept from the basic concepts section, and the student randomly selects two numbered game pieces from a cloth bag, each corresponding to the intermediate-to-advanced concepts. Neither one of us knows which intermediate-to-advanced concept he or she will have to do. This ensures objectivity on my part and enforces having to practice every one of those concepts. It also makes it difficult for students to gain an upper hand by talking with students who have taken the test before.

Like the professional driving examiner after each test, I print my scoring spreadsheet, discuss it item by item, and record the grade on my spreadsheet grade book. All this takes about fifteen minutes, including greeting and small talk.

“Road Test” results?
Road-tested students have an advantage because:

- They are better prepared for the test because of the additional pressure of having me watch how they do each step; also, it becomes quite evident who is unprepared.
- They receive immediate results and feedback.
- I get to know each student on a one-to-one basis; it is an excellent opportunity to hear the shy, the meek and the yawner.
- I take the opportunity to show and/or correct any wrong items on the spot and make the student do it after me; this becomes a very effective tool—something that I find preferable to the typical delayed correction that may be ignored by the student.
- I find any weak items on the test, if any exist.
- Grading is immediate and done at the time of the exam. Not only does this save me time outside of class, but it helps students retain information they were tested on.
- Students become used to thinking on their feet and expressing themselves in situations that may well mimic those they will find in their careers.

Cross-curriculum applicability
Can this be done in subjects other than computer applications or other hands-on activity? Sure. For example, an English instructor, could question a student’s term paper content orally using similar one-on-one methods. It’s all too easy to buy a term paper from the many existing Internet sites, but it’s tough to fake writing competency when the instructor is monitoring the process.

A math instructor, could evaluate one-on-one for no other reason than to follow a student’s thought pattern in solving a problem. This would allow the instructor to find calculation mistakes and process inefficiencies.

I have always favored a one-on-one approach where I can evaluate the work of one person at a time.